Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

The new thioantimonate (V) $\left(\mathrm{C}_{\mathbf{3}} \mathrm{H}_{\mathbf{1 0}} \mathrm{N}\right)\left[\mathrm{NiSbS}_{\mathbf{4}}\left(\mathrm{C}_{\mathbf{6}} \mathrm{H}_{\mathbf{1 8}} \mathrm{N}_{\mathbf{4}}\right)\right]$

Ralph Stähler and Wolfgang Bensch*

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel,
Olshausenstraße 40, D-24098 Kiel, Germany
Correspondence e-mail: wbensch@ac.uni-kiel.de

Received 29 August 2002
Accepted 27 September 2002
Online 22 October 2002
Turquoise crystals of the title salt, propylammonium di- μ -thio-1:2 $\kappa^{4} S$-dithio- $2 \kappa^{2} S$-tris(2-aminoethyl)amine- $1 \kappa^{4} N$-anti$\operatorname{mony}(\mathrm{V})$ nickel(II), $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)\left[\mathrm{NiSbS}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{4}\right)\right]$ or [PAH][$\mathrm{Ni}($ tren $) \mathrm{SbS}_{4}$] [where tren is tris(2-aminoethyl)amine and PA is propylamine], were synthesized under solvothermal conditions by reacting [$\left.\mathrm{Ni}(\text { tren })_{2}\right] \mathrm{Cl}_{2}, \mathrm{Sb}$ and S in a solution of PA . The $\mathrm{Ni}^{\mathrm{II}}$ ion is octahedrally surrounded by four N atoms of the tetradentate tren molecule and by two S atoms of the tetrahedral $\left[\mathrm{Sb}^{\vee} \mathrm{S}_{4}\right]^{3-}$ anion, thus forming the anionic [$\mathrm{Ni}($ tren $\left.) \mathrm{SbS}_{4}\right]^{-}$part of the compound. Charge balance is achieved through the PAH^{+}cation. An extended intermolecular hydrogen-bonding network is observed between the anion and the cation.

Comment

Thioantimonates(III) exhibit a rich structural diversity, due to the very flexible coordination behaviour of the $\mathrm{Sb}^{\text {III }}$ ion, with coordination numbers ranging from 3 to 6 (Sheldrick \& Wachhold, 1997; Wang \& Liebau, 1996). Thioantimonate(III) anions occur as isolated units, chains, layers or three-dimensional frameworks (Sheldrick \& Wachhold, 1998). On the other hand, thioantimonates(V) are often isolated (Graf \& Schäfer, 1976; Schur et al., 1998). Compounds in which the $\mathrm{Sb}^{\mathrm{V}} \mathrm{S}_{4}$ tetrahedron is interconnected to transition metal cations are $A_{2} \mathrm{AuSbS}_{4}$ (A is Rb or Cs; Hanko \& Kanatzidis, 1998), $M \mathrm{Ag}_{2} \mathrm{SbS}_{4}$ and $M_{2} \mathrm{AgSbS}_{4}(M$ is K or Rb ; Schimek et al., 1996), and $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{9} \mathrm{Mo}_{3} \mathrm{~S}_{4} \mathrm{SbS}_{4} \mathrm{Mo}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right]\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\left.\mathrm{SO}_{3}\right)_{8} \cdot 24 \mathrm{H}_{2} \mathrm{O}$ (Sakane et al., 1998).

A way of connecting $\mathrm{Sb}^{\vee} \mathrm{S}_{4}$ tetrahedra to transition metal cations, based on our recent results obtained with thioantimonates(III), has been established. Using the tetradentate ligand tren [tris(2-aminoethyl)amine], together with Co and Ni , we have prepared neutral compounds such as $[\mathrm{Co}($ tren $)] \mathrm{Sb}_{2} \mathrm{~S}_{5}$ and $[\mathrm{Co}($ tren $)] \mathrm{Sb}_{4} \mathrm{~S}_{8}$ (Stähler \& Bensch, 2001a), the chain-like $\left[\mathrm{Sb}_{2} \mathrm{~S}_{4}\right]^{2-}$ anion in $[\mathrm{Ni}($ tren $)] \mathrm{Sb}_{2} \mathrm{~S}_{4}$ (Stähler \& Bensch, 2001a), and a layered compound, $[\mathrm{Co}$ (tren) $] \mathrm{Sb}_{2} \mathrm{~S}_{4}$ (Stähler \& Bensch, 2001b). In these compounds, the tetradentate ligand leaves one or two sites
free at the transition metal cation, and these sites are used to form bonds to the S atoms of the thioantimonate(III) anions. Applying the very successful method presented for thioantimonates(III), we synthesized the new and unusual title thioantimonate (V) compound, $[\mathrm{PAH}]\left[\mathrm{Ni}(\right.$ tren $\left.) \mathrm{SbS}_{4}\right]$, (I), with an $\left[\mathrm{Sb}^{\vee} \mathrm{S}_{4}\right]^{3-}$ anion acting as a bidentate ligand.

(I)

The structure of (I) is composed of PAH^{+}cations and $\left[\mathrm{Ni}(\text { tren }) \mathrm{SbS}_{4}\right]^{-}$anions (Fig. 1). The Ni^{2+} ion is surrounded by four N atoms of the tren ligand and by two S atoms of the $\left[\mathrm{Sb}^{\mathrm{V}} \mathrm{S}_{4}\right]^{3-}$ anion, forming a distorted octahedron $\left(\mathrm{NiN}_{4} \mathrm{~S}_{2}\right)$. The $\mathrm{Ni}-\mathrm{N}$ distances range from 2.0876 (19) to 2.116 (2) A, with $\mathrm{N}-\mathrm{Ni}-\mathrm{N}$ angles of between 82.47 (9) and 162.13 (9) ${ }^{\circ}$ (Table 1). The two $\mathrm{Ni}-\mathrm{S}$ distances of 2.4359 (12) and 2.6936 (9) Å are significantly different. It can be assumed that geometrical reasons are responsible for the long $\mathrm{Ni}-\mathrm{S} 2$ bond. The $\mathrm{S} 1-\mathrm{Ni}-\mathrm{N} 1\left[176.65(5)^{\circ}\right]$ and $\mathrm{S} 2-\mathrm{Ni}-\mathrm{N} 2\left[178.31(6)^{\circ}\right]$ angles deviate slightly from the ideal value of 180°. The $\mathrm{Sb}^{\mathrm{V}} \mathrm{S}_{4}$ tetrahedron is only moderately distorted, with $\mathrm{Sb}-\mathrm{S}$ distances and $\mathrm{S}-\mathrm{Sb}-\mathrm{S}$ angles in the ranges 2.3071 (10) -2.3467 (8) \AA and 98.54 (4)-115.66 (3) ${ }^{\circ}$, respectively (Table 1). These values are in the normal range for $\left[\mathrm{Sb}^{\mathrm{V}} \mathrm{S}_{4}\right]^{3-}$ anions (Mereiter et al., 1979; Hanko \& Kanatzidis, 1998; Sakane et al., 1998).

The anionic part of the structure of (I) may be viewed as being composed of an $\left[\mathrm{NiN}_{4}\right]^{2+}$ cation sharing two S atoms with the $\left[\mathrm{Sb}^{\vee} \mathrm{S}_{4}\right]^{3-}$ anion, thus yielding the final $\left[\mathrm{Ni}(\text { tren }) \mathrm{SbS}_{4}\right]^{-}$anion. These anions are stacked along the a axis (Fig. 2) and the PAH^{+}cations are located near the $\left[\mathrm{Sb}^{\vee} \mathrm{S}_{4}\right]^{3-}$ anion. The $\mathrm{C}-\mathrm{N}$ bond distance in PAH^{+}is in the normal range for a primary amine $[\mathrm{C} 7-\mathrm{N} 5=1.465$ (3) \AA].

In (I), a hydrogen-bond network (Table 2) is observed which may contribute significantly to the stability of the compound. There are three short intermolecular contacts, involving atoms S1 (H2N2 $\cdots \mathrm{S}_{1}{ }^{\text {ii }}$ and H1N4…S 1^{ii}; see Table 2 for symmetry codes) and S4 (H1N2 $\cdot \mathrm{S} 4^{\mathrm{i}}$) of the $\left[\mathrm{Sb}^{\mathrm{V}} \mathrm{S}_{4}\right]^{3-}$ tetrahedron and the H atoms of the tren ligand, with $\mathrm{H} \cdots \mathrm{S}$

Figure 1
The PAH^{+}cation and $\left[\mathrm{Ni}(\text { tren }) \mathrm{SbS}_{4}\right]^{-}$anion in (I), with the atomlabelling scheme. Displacement ellipsoids are at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
The arrangement of the cations and anions in (I). The H atoms of the tren ligands have been omitted for clarity.
distances in the range $2.54-2.62 \AA$. Four $\mathrm{H} \cdots \mathrm{S}$ contacts are observed between the PAH^{+}cation and atoms S1, S3, S3 ${ }^{\text {iii }}$ and $S 4^{i}$, with $\mathrm{H} \cdots \mathrm{S}$ distances in the range $2.46-2.75 \AA$; the corresponding angles are in the range $120-173^{\circ}$.

Experimental

Compound (I) was obtained in nearly 30% yield by the reaction of $\left[\mathrm{Ni}(\text { tren })_{2}\right] \mathrm{Cl}_{2}$ (Ellermeier et al., 2002) ($0.211 \mathrm{~g}, 0.5 \mathrm{mmol}$), Sb ($0.121 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{S}(0.096 \mathrm{~g}, 3 \mathrm{mmol})$ in 5 ml of 99% PA (Merck Chemical). The mixture was heated in a Teflon-lined steel autoclave with an inner volume of 30 ml for 6 d at 413 K , and then cooled to room temperature over a period of 3 h . After washing with water and drying under vacuum, turquoise crystals of (I) were obtained. The compound is stable in both air and water.

Crystal data

$\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)\left[\mathrm{NiSbS}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{4}\right)\right]$
$M_{r}=515.06$
Triclinic, $P \overline{1}$
$a=7.5707(15) \AA$
$b=11.303$ (2) \AA
$c=12.605$ (3) \AA
$\alpha=63.98$ (3) ${ }^{\circ}$
$\beta=84.49$ (3) ${ }^{\circ}$
$\gamma=82.26(3)^{\circ}$
$V=959.7(3) \AA^{3}$

Data collection

Philips PW1100 four-circle diffractometer

ω / θ scans

Absorption correction: ψ scan
[X-SHAPE (Stoe \& Cie, 1998) and X-RED (Stoe \& Cie, 1998)]
$T_{\text {min }}=0.513, T_{\text {max }}=0.720$
4967 measured reflections
4625 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.050$
$S=1.02$
4625 reflections
181 parameters
H -atom parameters constrained
All H atoms were positioned with idealized geometry $(\mathrm{C}-\mathrm{H}=$ $0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.89-0.90 \AA$) and refined with fixed isotropic displacement parameters using a riding model.

Data collection: DIF4 (Stoe \& Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe \& Cie, 1992); structure solution: SHELXS97 (Sheldrick, 1997); structure refinement: SHELXL97

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{Sb}-\mathrm{S} 1$	$2.3467(8)$	$\mathrm{S} 2-\mathrm{Ni}$	$2.6936(9)$
$\mathrm{Sb}-\mathrm{S} 2$	$2.3333(12)$	$\mathrm{Ni}-\mathrm{N} 1$	$2.116(2)$
$\mathrm{Sb}-\mathrm{S} 3$	$2.3150(8)$	$\mathrm{Ni}-\mathrm{N} 2$	$2.0876(19)$
$\mathrm{Sb}-\mathrm{S} 4$	$2.3071(10)$	$\mathrm{Ni}-\mathrm{N} 3$	$2.109(2)$
$\mathrm{S} 1-\mathrm{Ni}$	$2.4359(12)$	$\mathrm{Ni}-\mathrm{N} 4$	$2.110(2)$
			$95.54(8)$
$\mathrm{S} 1-\mathrm{Sb}-\mathrm{S} 2$	$98.54(4)$	$\mathrm{N} 2-\mathrm{Ni}-\mathrm{N} 4$	$162.13(9)$
$\mathrm{S} 1-\mathrm{Sb}-\mathrm{S} 3$	$107.58(3)$	$\mathrm{N} 3-\mathrm{Ni}-\mathrm{N} 4$	$176.65(5)$
$\mathrm{S} 1-\mathrm{Sb}-\mathrm{S} 4$	$111.90(3)$	$\mathrm{N} 1-\mathrm{Ni}-\mathrm{S} 1$	$93.94(6)$
$\mathrm{S} 2-\mathrm{Sb}-\mathrm{S} 3$	$115.66(3)$	$\mathrm{N} 2-\mathrm{Ni}-\mathrm{S} 1$	$99.24(7)$
$\mathrm{S} 2-\mathrm{Sb}-\mathrm{S} 4$	$112.23(4)$	$\mathrm{N} 3-\mathrm{Ni}-\mathrm{S} 1$	$96.23(6)$
$\mathrm{S} 3-\mathrm{Sb}-\mathrm{S} 4$	$110.31(4)$	$\mathrm{N} 4-\mathrm{Ni}-\mathrm{S} 1$	$95.67(6)$
$\mathrm{Sb}-\mathrm{S} 1-\mathrm{Ni}$	$89.83(4)$	$\mathrm{N} 1-\mathrm{Ni}-\mathrm{S} 2$	$178.31(6)$
$\mathrm{Sb}-\mathrm{S} 2-\mathrm{Ni}$	$84.10(4)$	$\mathrm{N} 2-\mathrm{Ni}-\mathrm{S} 2$	$86.41(7)$
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{N} 2$	$83.09(8)$	$\mathrm{N} 3-\mathrm{Ni}-\mathrm{S} 2$	$85.43(6)$
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{N} 3$	$82.47(9)$	$\mathrm{N} 4-\mathrm{Ni}-\mathrm{S} 2$	$87.33(4)$
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{N} 4$	$82.55(8)$	$\mathrm{S} 1-\mathrm{Ni}-\mathrm{S} 2$	
$\mathrm{~N} 2-\mathrm{Ni}-\mathrm{N} 3$	$92.28(8)$		

Table 2
Hydrogen-bonding and short-contact geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H1N2 \cdots S 4^{i}	0.90	2.56	$3.445(2)$	170
N2-H2N2 \cdots S1	0.90	2.54	$3.431(2)$	172
N4-H1N4 $\mathrm{S}^{\text {ii }}$	0.90	2.62	$3.428(2)$	150
N5-H1N5 \cdots S3 ${ }^{\text {iii }}$	0.89	2.50	$3.347(3)$	159
N5-H2N5 \cdots S4	0.89	2.46	$3.348(3)$	173
N5-H3N5 \cdots S3	0.89	2.70	$3.515(3)$	152
N5-H3N5 \cdots S1	0.89	2.75	$3.284(3)$	120

Symmetry codes: (i) $x-1, y, z$; (ii) $1-x, 1-y, 1-z$; (iii) $1-x, 2-y, 1-z$.
(Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999).

We acknowledge financial support from the state of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (DFG).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1121). Services for accessing these data are described at the back of the journal.

References

Brandenburg, K. (1999). DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
Ellermeier, J., Stähler, R. \& Bensch, W. (2002). Acta Cryst. C58, m70-m73.
Graf, H. A. \& Schäfer, H. (1976). Z. Anorg. Allg. Chem. 425, 67-80.
Hanko, J. A. \& Kanatzidis, M. G. (1998). J. Alloys Compd, 280, 71-76.
Mereiter, K., Preisinger, A. \& Guth, H. (1979). Acta Cryst. B35, 19-25.
Sakane, G., Hashimoto, K., Takahashi, M., Takeda, M. \& Shibahara, T. (1998). Inorg. Chem. 37, 4231-4234.
Schimek, G. L., Pennington, W. T., Wood, P. T. \& Kolis, J. W. (1996). J. Solid State Chem. 123, 277-284.
Schur, M., Rijnberk, H., Näther, C. \& Bensch, W. (1998). Polyhedron, 18, 101107.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, W. S. \& Wachhold, M. (1997). Angew. Chem. 109, 214-234; Angew. Chem. Int. Ed. Engl. (1997), 36, 206-224.
Sheldrick, W. S. \& Wachhold, M. (1998). Coord. Chem. Rev. 176, 211-322.
Stähler, R. \& Bensch, W. (2001a). J. Chem. Soc. Dalton Trans. pp. 2518-2522. Stähler, R. \& Bensch, W. (2001b). Eur. J. Inorg. Chem. pp. 3073-3078.
Stoe \& Cie (1992). DIF4 (Version 7.09X/DOS) and REDU4 (Version 7.03). Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1998). X-SHAPE (Version 1.03) and X-RED (Version 1.11). Stoe \& Cie, Darmstadt, Germany.
Wang, X. \& Liebau, F. (1996). Acta Cryst. B52, 7-15.

